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We present a recursive diagrammatic method for evaluating tree-
level Feynman diagrams involving multi-fermions which interact
through gauge bosaons {gluons or photons). Based on this method,
a package calied COMPUTE, which can generate and calcutate all the
possible Feynman diagrams for exclusive processes in perturbative
QCD, has been developed (available in both Mathematica and Ma-
ple). As an example, a caleulation of the nucleon Compton scattering
ampiitude is given. © 1984 Academic Press, Inc.

I. INTRODUCTION

It can hardly be overemphasized that the evaluation of Feyn-
man diagrams is one of the most common types of calculation
that high-energy, nuclear, and solid-state physicists encounter
nowadays. It is, therefore, very useful to develop methods that
can simplify the calculations. Casimir’s trick of squaring the
amplitude and turning it into a trace has been by far the most
commonly used tool, especially when it is required just to find
the spin average of the square of the amplitude. However, there
are many cases where we need the amplitudes themselves rather
than the square of amplitudes, such as in exclusive hadron
scattering processes [[], which we will discuss, Furthermore,
we need the amplitude for each helicity configuration to calcu-
late the polarized exclosive scattering processes. On the other
hand, we often find that in exclusive processes many diagrams
contribute already in the lowest order. Thus, our aim is to
devise techniques that can simplify the calculation of Feynman
diagram amplitudes and can be easily implemented onto a com-
putert.

Bjorken and Chen [2] are the first to evaluate'the amplitude
itself. Farrar and Neri [3] took the first innovative step to
perform the entire calculation analytically by computer. They
have developed several codes to evaluate symbolically all possi-
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ble Feynman amplitudes that contribute to the hard scattering
amplitude in QCD exclusive processes. Their most important
step was to make use of the Fierz identities in the Weylrepresen-
tation to perform the contractions of the gamma matrices to
simplify the spinor algebra. There are other spinor techniques
available [4-8] and most of them empioy closely related two-
component Weyl—var der Waerden spinor formalism.

In this paper, we present an alternative technique. The basic
idea is to rewrite the fermion propagators in terms of spinors,
so that a multi-fermion diagram can be expressed as a product of
several elementary diagrams of identical type, i.e., the diagram
given by two-fermions connected by one gluon exchange,
which we call a one-gluon-exchange diagram. The plan is to
calculate the one-gluon-exchange diagram or the basic building
block once and for ail and obtain the full amplitude of multi-
fermion diagram immediately by multiplying these building
blocks.

Compared with other techniques, the one presented here
is more transparent and easier to understand and implement,
because it is not necessary to do any further manipulation of
the fermion-strings such as the evaluation of the strings that
remain after the contractions of the gamma matrices in Ref. [3].

When it comes to the actual computer implementation,
there are generally two approaches: one is to write a specifi-
cally tailored program and the other is to develop a program
for more general purposes. The Schoonship [9] is an example
of the first approach with all its necessary algorithms *‘hard-
wired’’ into the assembly code. While the advantage of the
first approach is that the performance can be very fast, the
disadvantage is that it cannot be extended and accessed easily
by wider readers. We therefore follow the second approach
and we have implemented our spinor techniques onto some
standard platform. A package called COMPUTE [10, 11]
had been developed in both Mathematica [12] and Maple
[13], which are two of the most promising symbolic languages
capahle of providing a powerful environment in which results
can be evaluated numerically and manipulated in various
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ways. Recently, several programs have also been developed
using a similar approach, namely, HIP [14] with an empbasis
on tree-level multi-particle electroweak production processes
and FeynArts and FeynCalc [15, 16] to facilitate the caicula-
tion of radiative corrections.

Another invaluable asset in COMPUTE is the capability
of generating all possible Feynman diagrams in a given
process. For the multi-fermion diagrams, each fermion is
assigned by a number from 1 to n, where n is the total
number of fermions. Then, the gauge boson interactions
among the fermions can be represented by an array of these
numbers. For example, the one-gluon exchange between ith
quark and jth quark can be represented by (i, j) and the
triple-gluon vertex connecting three quarks i, j, k can be
represented by (i, j, k), etc. Since each Feynman diagram
is assigned by a particular combination of these arrays, all
possible diagrams can in principle be generated by their
permutations and combinations. We have developed such
algorithm [11] and implemented in our package to combine
with the spinor technique discussed in this paper.

COMPUTE 15 an on-going project that aims at developing
a symbolic package that can facilitate perturbative QCD
calculations for exclusive processes. We employed the present
version of the package to generate and calculate all 378
Feynman diagrams for nucleon Compton scattering. On a
SUN Sparc workstation, this took about five CPU hours and
10 MBytes of memory. Even though our package does not
have any intrinsic limit on the number of external fermions,
we were able to calculate the processes which require the
number of external fermions only up to four due to the
limited CPU hours in our local computers. As the number
of external particles increases, there is a rapid proliferation
of diagrams. However, we think that the performance of the
code could be much more improved by further optimizations
and such improvement would be crucial to handle the cases
involving more than four external fermions.

Since the color factors for many diagrams are the same and
can be calculated easily by hand using the tricks presented in
Ref. [17], we will restrict ourselves to the color-indepen-
dent part of the amplitude. In principle, one can implement
the algorithm in Ref. [17] to generate the color factors as
well.

We present our spinor techniques in Section II and iflus-
trate our method by calculating the exclusive nucleon comp-
ton scattering amplitude in Section III. For definiteness, our
discussion of the program will be based on the Mathematica
version. The conclusion is followed in Section 1V. The
lists of input and output of our example are given in the Ap-
pendix.

I1. SPINOR TECHNIQUES

The crux of the method is to observe that amplitude
comresponding to a generic gluon exchange diagram such
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FIG. 1. {(a} A generic two-gluon-exchange diagram. (b) Product of two
one-gluon-exchange diagram corresponding to Eq. (3}, We use &'s, s, and
p’s to denote four-mormenta and Greek letters A's, u's, 875 for heticides. The
zigzag lines represent photons or gluons,

as Fig. la contains a products of ‘‘fermion-strings’” of the
form

W (D by e (R it (B )y (f + myyan (k) (B (k) (1)

in Feynman gauge. As we will see later, the numerator factor
¢ + m from the fermion propagator is given by the sum of
the on-shell spinor product and the off-shell spinor product.
However, as a starting point for illustrative purposes, let us
first take only the on-shell spinor product, i.e.,

prm= 3 ulplidpy 2)

then Eq. (1) can be rewritten as

ﬁ;l [T (0 ryHan, (ko Vit Pyt (k)
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(3)

which can be represented pictorially as a product of two one-
gluon-exchange diagrams as shown in Fig. 1b. Therefore if we
have computed the amplitude for a general one-gluon-exchange
amplitude, we can write down the answer for a two-gluon-
exchange diagram immediately. The above idea can be repre-
sented as a pictorial equation

ki X, Lowy
Ky Ay % Yl Ly
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FIG. 2. A typical Born diagrams contributing to pp scaitering.
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We have put a “‘cross,”” X, to indicate where we “‘cut’”’ the
diagram. It is guite obvious that the same argument can be
applied recursively to the many-gluon-exchange cases. For
example, a five-gluon-exchange diagram occurring in a nu-
cleon—nucleon scattering processes such as the one shown in
Fig. 2, where we denote the propagators by py, p., p5, and ps,
can be “‘cut’” into one-gluon-exchange diagrams:

kit 2.8 P8, / ko4 [24
y I puBy It PuBy PP
Kyt P 3, Ppl3y A
g % © (3
k4 Pol3s k + It

where the sum is over the helicity of the p’s and we have
suppressed the helicity indices. The answer in Eq. (5) may look
quite complicated, but it can be handled and simplified guite
easily by some standard algebraic program, like Mathematica.
If one only needs numerical values, the algebraic simplification
step can be skipped. Using our trick, it is in fact possible and
quite straightforward to write FORTRAN programs to calculate
the amplitude numerically.

Our aim is now to compute the cne-gluon-exchange diagram.
To do this, we need to choose a representation. Most of the
other techniques employ two-component Weyl representation.
However, in our case, it does not matter which representation
we choose and in fact the finai answer should be independent
of the representations. For convenience, we work with the light-
cone representation. For any arbitrary vector v, the light-cone
components in terms of the Cartesian components is defined by

v =0 =
vt =v' — vt

vt =0+
vf=v' +

(6}
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The scalar product of any two vectors v, w is then v*w, =
Hvtw™ + vwt — v¥wht — vtwf). The Dirac matrices have
the form

. i 1 o’ o [ A
LA R A o =1 )

L N
. 0 of . 0 o
Y_L—gﬂ ol Y T -ot 0

in terms of the 2 X 2 Pauli matrices ¢. The Dirac spinors in
this representation are given by

[pt +m
1 P
Lﬂ([}):\/é]? p+*m N
L P
T
g pt+m
-p*t+m
| pt —m
NN
Ul(p _\2p+ p++m *
pr
-
1| pom
vi(p) = , ©)
kP \/2’? pl.
| ~(p"m)

with the normalization Z,. ; ; m{p)u(p) = 2m [1]. We define
a “‘quark-string’” % , (k, I) by the matrix element

1 _
Q8 k0 = 2T Dy B (i0)
where u = (+, —, R, L). Pictorially, we write
N, kD= jﬁ (1

kN LA

2

Writing @4 (%, /) as a column vector, we find
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m{l™ — k") P £
m, it is not difficult to show that
0
- B P+ m =2 w(pi(p) + w(pW(p), (20)
On the other hand, we define @* to be the row vector
where
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Therefore the numerator of the one-gluon-exchange diagram
is given by

ki A lyow
§ =0,k 1)Q,, (b l). (15
kl’ ?\2 !—_n s

In the case where mass can be neglected, helicity along a quark
line is conserved as can be seen from Eq. (13) that 0% | and
(% ; vanish. For simplicity, we will restrict ourselves to the
massless case. For the massive fermion case, the only complica-
tion is the inclusion of more terms corresponding to the helicity-
flip contribution, Using Eq. (15), we find that

ko t It
= N (K LKRE + kTR

1712

kot b — KRR R,

171

(16)

Therefore, on substituting Eq. (21) into Eq. (1), we get one
more contribution from the “‘w’’ spinors, or off-shell spinors.
Representing it by a dot line, Eq. (1) becomes

Ky A, 41y
ky A, é p.B L by
ko Ay % LTS
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FIG. 3. A diagram containing a three-gluon vertex.

Comparing Egs. {21) and (8), we see that the w spinor, apart
from the normalization factor, can be obtained from the i spinor
by setting m = 0, p* = 0, and p* = p* = L. Therefore, we
have the prescription for computing the off-shell diagram (i.e.,
one-gluon-exchange diagram involving w spinors), namely, re-
placing the corresponding momentum p by the momentum » =
(0, 0,1, 1y in (+, —, R, L) components and changing the
normalization from 1/V2p* to &( p)/V2p* in the corresponding
on-shell one-gluon-exchange diagram. In short, after we have
cut the propagators, we have to sum up both the aff-shell and
on-shell diagrams, where the off-shell diagrams can be obtained
from the on-shell diagrams by the above prescription. It is
useful to note that any off-shell diagram with three or more
w-spinors vanishes (see Egs, (16)-{19)).

The basic on-shell one-gluon-exchange diagrams are summa-
rized in Egs. {16)—-(19). However, there are other types of
diagrams that, along with the one-gluon-exchange diagram,
form the basic building blocks of more complex Feynman
diagrams. For example, in processes that involve a real photon
such as Compton scattering, after cutting the fermion propaga-
tors, there appears the diagram

kA [T

(1) £u, (k)

(23)

Sll“

le", e, € =10, kD),

which can be easily calculated once the polarization vector £(A),
A = 7.l is chosen. If we cail the above diagram a *‘photon-
contracted diagram,’” then we may have more generally a one-
particle-contracted diagram or a gluon-contracted diagram,

kN Lo

w, () 4,0

=5lg .9 ~d" —4"10,, kD, (24
wiere g is the momentum of the particle. These diagrams also

581/115/2-3
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appear when we try to break down three- or four-gluon vertices.
For instances, the three-gluon vertices in Fig. 3 give

(P — kg + (2 — Pihge T (s — Piugal. (25)

Using the same idea of breaking down more complex Feynman
diagrams into basic ones, it is not difficult to see that the
amplitude represented by Fig. 3 can be pictoriaily rewritten as

kl ! L ki ll
SIS B S
k, Lk I k, Ik ]

k, I,
+ § ; - (26)
k, I,k 1,

Figuratively, this can be thought of as cutting one of the gluon
lines and connecting the remaining two together and summing
over different permutations. Similarly, a four-gluon vertex can
be handled by cutting the vertex and then connecting two pairs
of gluon lines together and summing over different possibilities
of gluon line pairs.

Although we have restricted ourselves to strong interaction
and Feynman gauge, all the necessary ingredients have been
laid down by now. It is not difficult to see how to generalize
our technique to other field theories. For example, the vertices
change from * to y*(1 — %) in weak interaction. Then we
can define another fermion-string

Q4 D = (vl — v, (k)

and stmilarly calculate the corresponding one-gluon-exchange
diagram which can then be used to build up more complex

k \ X

Sy N i
rd Vd

FIG. 4. A typical diagram in nucleon Compton scattering processes.
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diagrams. When antiparticles are involved, one can also con-
sider ....v or D...u types of fermion-strings. The actual
implementation should be straightforward because one can just
modify the one-gluon-exchange function declared in the
program.

1. SAMPLE CALCULATION

We apply our technique to a particular diagram as an exam-
ple. The diagram of our example, along with the momentum
assignment, is shown in Fig. 4. It represents a typical Feynman
diagram that one has to evaluate in nucleon Compton scattering
in the framework of perturbative QCD. We choose this diagram
because it has been worked out by hand in detail in Appendix
C of Ref. [18]. Following Ref, [ 18], the momenta in the center-
of-mass frame have the Cartesian components

p=E1,0,0,1}, 27
k= FE(1,0,0,—1), (28)
p' = E(],sin 8,0, cos 8), 29
k' =E(], —sin 8,0, —cos ), (30)
and the photon polarization vectors are
1 1
81‘( ):—(0!1,“'?90)1 8;(l):_~(0,l,f,0), (31)
i V2 V2
1
el T)=—=(0,cos & —i, —sin 4}, (32)
f T \/5
1
g )= —~——=1(0,cos 8,i, —sin &}, 33
Their light-cone components (+, —, R, L) are
p=2E(1,0,0,0), k=2E0,1,0,0), (34)
p' = 2E(ct, 5%, sc,50), k' = 2E(s% 2, —sc, —sc), (35
&(1)=V200,0,1,0), e(l)= V2(0,0,0, - 1), (36)
el T)= \/E(msc, sc, C°, —57%), 3N
g 1) =Vasc, —sc, 5% —¢), 3%)

where s = sin(}6) and ¢ = cos{z6). Here, we denote the center-
of-mass energy Mandelstam invariants by § = (p + k) =
4E? Tt is convenient to consider general linear combination of
polarization vectors

g=as(1)+ Bell) &=1ys()+ (1) (39

so that all four amplitudes with different combinations of photon
helicities can be computed at the same time.

PANG AND H

According to the algorithm described in Section 11, we cut
the diagram in Fig. 4 along the quark propagators. Thus, the
numerator of the color- and flavor-independent part of the am-
plitude is given by

k, mt P L
Pt Lt Py Pl
v) (40)
k; § Prb kst Lt

where the sum over s include both on-shell and off-shell dia-
grams.

To evaluate this expression, one has to specify the above
expression by a list

gdiag = {{k1,p1},{p3,12},{p1,11,k2,pR},
{p2,p3,k3,13}}

with an obvious convention when it is compared with Eq. (40).
Similarly, the spin configuration is specified by the list

spindiag = {{f,u},{1,d},{u,d},{d,u}},

where W and d denote spin up and spin down, respectively,
and f and 1 for final and initial photon states. The propagator
is collected into a list

propagatorlist = {p1, p&, p3, p4, p5}

To evaluate the numerator of the original diagram, one calls
the function CalNumDiag by the statement:

numera = CalNumDiag['‘nquarks,”’ nphotons,
gdiag, spindiag, propagatorlist],

where “‘ngquarks’ = 3 is the number of quarks and ‘‘nipho-
tons’ = 2 is the number of photons.
This gives the resuit

88 (1 — yas?) + Byvus?lyx; + 6xz),

where x; and y; are the momentum fractions of the ith guark in
the initial and final states respectively. It is the same as that
obtained in Ref. [18].

To evaluate the denominator of the diagram, one calls the
function CalDenDiag by the statement:

den = CalDenDiag[nquarks,nphotons,
propagatorlist].
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On the other hand, one can calculate both the numerator and
denominator of the diagram at the same time by calling the
function CalDiag:

answer = CalDiaginquarks,nphotons,gdiag,
spindiag, propagatorlist].

We applied our method to other diagrams in Ref. [18] and
verified the equivalence. We applied the function which gener-
ates all the possible diagrams to nucleon Compton scattering
to find the total 378 diagrams. Among 378 diagrams, 42 dia-
grams are coming from the triple-gluon vertex, and the color
factors of these diagrams are zero due to the symmetry. More
extensive descriptions of the functions available in our package
can be found in Ref. [11].

1IV. CONCLUSION

In summary, we have presented a technique that breaks com-
plex diagrams down into simple building blocks. In our ap-
proach, the building blocks consist of pairs of fermion lines
connected by gluons or simple fermion lines that radiate an
external ghuon or photon. These building blocks are formed by
replacing the numerators of the fermion propagators by spinor
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outer products, utilizing the completeness relations. Summing
both on-shell and off-shell spinor products is necessary in this
method and thus the final step of summing all the terms and
simplifying the result would be a tedious task if it were done
by hand. Therefore, we have developed a symbolic program to
utilize this technique and generate the final result automatically.

Aithough there are other techniques available that can also
simplify Feynman diagram calculations, we believe that our
method is worth presentation due to its elegance and straightfor-
ward implementation. A traditional construction of the Feyn-
man diagrams is the collection of the basic elements such as
Dirac spinors, vertices, and propagators involving non-abelian
gamma matrices. On the other hand, in our picture the basic
elements of the Feynman diagrams are the one-particle-ex-
change and one-particle-contracted diagrams which are just
ordinary functions of the kinematical variables. Thus, we have
avoided dealing with the non-ahelian algebra of the gamma
matrices and greatly simplified the calculation. We have devel-
oped a package called COMPUTE which is available in both
Mathematica and Maple. COMPUTE is able to generate all the
possible Feynman diagrams for a given process and perform
the subsequent evaluation of each diagram. With the help of
such a computer symbolic program, we expect to be able 1o
do calculations which were almost impossibie before,

APPENDIX A: LISTING OF INPUT FILE

Print{‘“4& Sample Calculation of Compton scattering \n
W Caiculating the diagram AB1 in Kronfeld and Nizic paper \n

W Please wait .... \n"" )

{* this file calculate the diagram AS1 for Compton Scattering

discussed in the paper

Phys. Rev. D44, 3445 (1991) by A.S. Kronfeld and B. Nizie,
where they have calculated the diagram AS51 by hand

>

(* One has to specify the momenta of both the incoming quarks

and the outgoing quarks.
*

P = S8qrtis] {1,0,0,0}; k = 8qrt[s) {0,1,0,0};
pprime = Sqrt(8] {¢"8,8°8,8 ¢,s ¢k
kprime = 3qrt[S) {s"8,c"8,-s ¢,-5 ¢};
k1l = x1 p; k& = x2 p;

11 = y1 pprime; 12 = y& pprime;

k3 = x3 p;
13 = y3 pprime;

(* the following specify the quarks and gluon propagator *)
pl = k1 — kprime; p& = k1 - kprime —- 11 + k&; p3=12 — k;

I

p4 = pR — pl; pb =13 — k3;

x3=1-x1—-x8
y3=1-yl -y&2

(* the following specify the configuration of the Feynman as

well a3 the heliclty (ie. the spin) configuration *>
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spindiag=1{{f,u},{i,d},{u,d},{d,u}}
gdiag ={{k1,pl1},{p3,12},{p1,11,k2,p2},{pR,p3,k3,13}}
propagatorlist ={pl,p2,p3,p4,p5}

(* the following calculates the f‘eyn_ma.n diagram. The Hard Scattering
Amplitude is defined with the extra factor of Sqrt{xl x2 x3yl y2 y31™%
{* we can calculate just the numerator or denominator separately *)

num=CalNumDiag[3,2,8diag, spindiag, propagatorlist]

i

num = num /Sqri[x11/8qrtix2]1/8qrilx3)/Sqrily11/8qri[y2]/8qrtly3]

Cancellnum] /. ¢’ + 8 — 1

il

num
Print{‘"n numerator =""]; Printinum]

(* num gives the same result as given by the reference *)
den=CalDenDiagl[3,2,propagatorlist]

Print{‘n denominator =""]; Print{den]

(* or we can calculate both numerator and denominator at the same
time *)

ans=CalDiagl3,2,8diag,spindiag, propagatorlist]
ans=ans/Sqrt{x1]/8qrt(x2]1/8qrt(x3]/8qrt{y11/8qrtiyL]/Sartiy 3]
ans=Cancelfans] /.¢c"8 + 872 — 1

Print[*‘n hard scattering amplitude =";
Print{ans]

APPENDIX B: EXAMPLE RUN OUTPUT

The following is an output from an actual run of the our example.

In{ii:= (COMPUTE.m
*xekkixis Wealoormne to COMDPITE 1.0 trtstkertes

COMPUTE is a package 10 calculate the amplitude
for exclusive processes in perturbative QCD.

Copyright by Alex Pang and Chueng-Ryong Ji
For more information, please type YComputelnfo.

In[2]:= {Compton.m

Sample Calculation of Compton scattering

Calculating the diagram AS51 in Kronfsld and Nizic paper
Please wait ....

numerator =
323 2 2
8 ¢85 (gamma x1 + delta x2) (alpha — alpha g y2 + betas y2)
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denominator =
445
ceb x1xB(—-1 +x1 +x2)y¥yl
2 2 4 22 4 2 2
> (cxl+exR-cyl-2cseyl—sylt+ts xlyl +8 xRyl

> (1 -yl —y&Yy2
hard scattering amplitude =
2
] R
> (¢8 8 ¥x1 xR (-1 +xl +x)yl

P2 2 4 22 4

2
(8 (gamma. x1 + delta x2) (alpha — alpha s y& + beta s y2)} /

P b

>{cxl+exR-cyl-2cs8yl-5syl+s xlyl+s xRy

> (1 -yl -y yae
hard scattering amplitude =

2

22
> (es 8 x} xB (-1 +x1 + x>yl

2 2 4 22
> ((cxl)-cxR+cyl+2cs yl+

> y2(-1+yl+ya)
In|3]:= Quit
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